BETHEL

UNIVERSITY

Abstract

postrecovery
Methoas:
Eil

Methods

Introduction

	ncreased vocabulary learning and reaction time. Other studies show adults' brain-processing speed and memory improved after half an hour of moderate exerci conjunction with these physiological and neuromotor benefits, many advocates of exercise report feelings of increased mood and focus, the ability to think more arly, as well as reductions in psychological conditions such as depression and anxiety. ${ }^{8}$ Throughout research it is evident that exercise not only has positive outco relate to improved physical functioning of the kinematic chain, but also to factors that deal with a more disregarded aspect of functioning; cognition. Physiologically, exercise immediatly heightens the blood supply to the brain. This increase in blood being delivered to the brain, in turn, leads to in nitive functioning. Not only is aerobic activity related to changes in the brain and enhancement of cerebral blood flow, but also oxygen supply to sions of physical activity have shown to elevate hippocampal high affinity choline uptake, (HACU) associated with a spatial-learning set task.? The hippocampis ey portion of the brain associated with memory and learning.' ${ }^{\text {. Sarting in the late twenties, most individuals begin to lose about one percent of the volume of the }}$ ccampus, annually. However, exercise has been shown to counteract these detrimental physical effects. In fact, a link has been found between regular aerobic Contrary to prior beliefs, researchers have found that the process of neurogenesis, or the creation of new brain cells, is accelerated with both aerobic and anaer ercise. ${ }^{6,7}$ For neurogenesis to occur, a protein found in the brain known as BDNF, or brain-derived neurotrophic factor, is essential for supporting the health of sting neurons and coaxing the creation of new brain cells. ${ }^{6}$ Research has shown that acute exercise aids in increasing the levels of the BDNF protein in the brai ition, exercise induces changes in the neuroplasticity of different brain regions and BDNF signaling, which positively affect learning and memory performance ential explanation for this advantage is that these brain-specific neuronal adaptations are induced by various levels of intensity or stress elicited by different type rcise. Since cognitive tasks engage different areas of the brain, it is possible that the cognitive effects of a single bout of acute exercise are based on which part brain is/are activated at that intensity. Howerer However, limited and conflicting empirical research has been done regarding the relationship between specific exercise intensities and cognitive functioning. utes aided in multiple cognitive processes byat Tomporowski, 2003 , indicated that submaximal aerobic exercise performed for durations between twenty and dence of a distinct improvement in information processing during sustained ergometer cycling at intensities ranging from 40% to 70% of VO_{2} max. Increase in siological arousal or activation induced by physical activity explains this facilitating effect of information processing observed during or immediately after a bot In preceding research, a general problem in examining the effect of short-term, acute exercise on simple and choice reaction times has been the use of too few nsities, or too small of increments to vary intensities to elicit significant physiological changes. ${ }^{2}$ It is important to use an objective means, as opposed to perceiver
increased vocabulary learning and reaction time. Other sudies show adults brain-processing speed and memory improved after half an hour of moderate exerci onjunction with these physiological and neuromotor benefits, many advocates of exercise report feelings of increased mood and focus, the ability to think more arly, as well as reductions in psychological conditions such as depression and anxiety. ${ }^{\text {. Throughout research it is evident that exercise not only has po }}$ relate to improved physical functioning of the kinematic chain, but also to factors that deal with a more disregarded aspect of functioning; cognition. Physiologically, exercise immediately heightens the blood supply to the brain. This increase in blood being delivered to the brain, in turn, leads to improved nitive functioning. Not only is aerobic activity related to changes in the brain and enhancement of cerebral blood flow, but also oxygen supply to neurons. Sing ey portion of the brain associated with memory and learning. ${ }^{7}$ Starting in the late twenties, most individuals begin to lose about one percent of the volume of the pocampus, annually. However, exercise has been shown to counteract these detrimental physical effects. In fact, a link has been found between regular aerobic rcise and hippocampus growth after just three months. Contrary to prior beliefs, researchers have found that the process of neurogenesis, or the creation of new brain cells, is accelerated with both aerobic and anaer sting neurons and coaxing the creation of new brain cells. ${ }^{6}$ Research has shown that acute exercise aids in increasing the levels of the BDNF protein in the brain nal exercisise induces changes in the neuroplasticity of different brain regions and BDNF signaling, which positively affect learning and memory performance, Since cognitive tasks engage different areas of the brain, it is possible that the cognitive effects of a single bout of acute exercise are based on which part brain is/are activated at that intensity. However, limited and conflicting emp However, limited and conflicting empirical research has been done regarding the relationship between specific exercise intensities and cognitive functioning. Its of eleven of the fifteen studies evaluated by Tomporowski, 2003 , indicated that submaximal aerobic exercise performed for durations between twenty and utes aided in multiple cognitive processes that are critical to optimal performance and behavior. ${ }^{\text {I }}$ In numerous studies conducted since 1990 , there has been dence of a distinct improvement in information processing during sustained ergometer cycling at intensities ranging from 40% to 70% of VO_{2} max. Increase in siological arousal or activation induced by physical activity explains this facilitating effect of information processing observed during or immediately after a bour rcise In preceding research, a general problem in examining the effect of short-term, acute exercise on simple and choice reaction times has been the use of too few sities, or too small of increments to vary intensities to elicit significant physiological changes. ${ }^{2}$ It is important to use an objective means, as opposed to perceiver on, to determine intensity during aerobic exercise. Therefore, in the present study, the researchers defined the intensities used in terms of the particicipant's 	

Results

 iffereences in intensity and reaction time, word cognitive functioning, and number cognitive finctioning at the specific time points throughout the activity. In addition, a on-way ANO
was onduduted to dotermine differences in average reaction time of baselinine and ineretest

 owever no significant difference was found dat the low intensity ($\mathrm{p}=.204$) or high intensity

 ligh hinensity $(\mathrm{p}=5.522$. The one-way ANOVA conducted to assess differences in average reaction time of baseline and inter-test scores between the three intensities provided no

Conclusion

Overall, the results do not show simultaneous significant improvements in both reaction time and cognitive functioning in active collegiate studdents during acute bouts of cycle ergometer
aerobic activity at any intensity. Performing at a high intensity of $70-75 \%$ HR m max appeared too demanding to elicit positive stimulation of either reaction time or cognitive functioning. .he inability to enhance these processes may be due to task complexities inherent in the reaction time
motor task and the memory recall cognitive tasks requiring heightened awareness, attention, and motor ask ana dhe medor areccal exhausted by the energetic demands of high intensity exercise.
physiogical demand alreal
In contrast, the low intensity of $50-55 \%$ HR max was too light to elicit enough arousal to stimulate In contrast, the low intensity of $50-55 \%$ HR max was too light to elicit enough arousal to stimulate
ignificant improvements in reaction time or word cognitive functioning, only number cognitive functioning.
In conclusion, the results support that bouts of aerobic activity between $60-65 \% \mathrm{HR}_{\text {max }}$,
 lasting at teast $18: 30$ minutes elici a physisition inmation processing. Further research
enhancing reaction time, and therofre posisly informand
necessary to explicate the neurophysiological mechanisms that support the dynamics of the raxusing effece of of moderate intensity aerobic activity. Focusing on different forms of full kinetic
chain aerobic activity such as running. that stress different areas of the body may facilitate hain aerobic activity, such as

References

American College of Sports Medicine. (2010). ACSM's Guidelines for exercise testing and
prescription (8) ${ }^{\text {th }}$ ed.). Philadelphia, PA: Wolters Kluwer, Lippincott Williams \& Wikins. Draper, S., McMorris, T., \& Parker, J. K. (2010). Effect of acute exercise of differing intensites on
simple and choice reaction and movement times. Psychology of Sport and Science, 11 , $536-241$.

 Nanda, B., Balde. J., \& Manjunatha, S. (2013). The a cute effects of a single bout of moderate-
intensity aerobic exercrisise on cogntitive functions in healthy adult males. Journal of Clinical and intensity aerobic exercise on cognitive functions in healthy adult males. Journal of Clinical and
Diagnostic Resarch, 7. doi:10.7860/JCDR $2013 / 5855.3341$

Reynolds, G. (2012). How exercise could lead to a better brain. New York Times Retriev
 Scad-to-a-better-brain.hitm!.pagewanted-all\&_r=0 . Schwecherl, L. (2013). Can exercise make us sin
greatist.com/fintess sexercise-make-us-smatter
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, I12, 297-324.
Whyte. G. P. (2008). Training induced changes in maximum heart rate. International Journal of
Sports Medicicie, 2(29), $129-133$.

